
HEROKU POSTGRES
architecture of a cloud database service

HEROKU

DEPLOY&RUN CODE

mainly web apps

routing and scaling

ADD-ONS

heroku postgres is an add-on

internal customer of the add-ons service to test new features, help discover requirements

ORIGINS

SINATRA & SIMPLE-DB

implement addons api

no database service at the time, so used aws simpledb, kv store

HOSTED ON HEROKU ITSELF

not only an addon, but all

[tk ororobous]

SELF-HOSTED POSTGRES & SEQUEL

will talk later on moving from a KV store to postgres with hstore

RESOURCE & SERVER

server => aws instance

resource => customer point of view

this model has decomposed into many more pieces over time

WEB ADMIN INTERFACE

has gone through several iterations, but started just as simple http page that refreshed.

very valuable to have

there are many services at Heroku that don’t, and I’m glad we had this

VIDEO GAME DEVELOPMENT

pvh’s past in video game led to this model

works surprisingly well

OBSERVE / TICK

observe environment, then take action on that information, repeat

STATE MACHINES

[TK diagram] [TK examples]

ALWAYS CONVERGING

most of the state machines are always trying to get to a good state

example: jan 14 aws outage, need to reassociate all EIPs, can detach all and rely on states to fix everything

JOB QUEUES

simple model each observable thing having a queue

QUEUE CLASSIC

postgres queue. interesting concept of picking randomly from the head of the queue to remove contention.

in postgres nice because enqueuing a job can be done transactionally. we don’t but other teams do

[TK link]

SIDEKIQ AND REDIS

eventually moved for performance reasons

QUEUE PROBLEMS

first relied on jobs reenqueuing themselves, but jobs can fall out

then moved to something that examined and put in missing jobs

now have workers that fill the queue

HEROKU PROCESS TYPES: PROCFILE

with heroku you can have one codebase with multiple different entry points

typically web for requests and worker for background jobs. maybe clock for periodic

[TK procfile example]

ORTHOGONAL SCALING

$ wc -l Procfile
 27 Procfile

“if you have to have a trick, do it a lot”

some queues are busy, some are slow, we can dedicate as many workers as needed for each

HSTORE

nice to be in the home of hstore

let us move from KV store to postgres

SEMI-SCHEMA

most of our tables still have an attrs_unparsed column [TK show]

allows for quick iteration, exploration of ideas

PROMOTE TO REAL COLUMNS

over time. don’t do this as much as probably should

OBSERVATIONS

especially for the observations, hstore is perfect.

as we think of new things to monitor, we can just start. drop old checks. without migrations.

we only need recent data.

[TK importance sharding]

DURABILITY & REPLICATION

WAL-E
github.com/wal-e/wal-e

written by Dan Farina

archive command, takes WAL and uploads to s3

<Explain WAL>

takes base-backups, handles downloading+restoring wal also

critically important: things fail all the time, aws is hostile

DISASTER RECOVERY

TIMELINES

became a first-class model with server and resource

progression of data over time

[TK diagrams]

FOLLOWERS

on the same timeline

read-only

FORKS

have same history, but create their own timeline

read+write

can also be point-in-time-recovery

INCIDENTS

servers down restart, server broken need to replay from wal,

need to add another disk, replication lagged, etc

OWN STATE MACHINE

triggered
incident
specific

incident
specific

await
resolution resolved archived

human
intervention

often takes a while to resolve, need to wait on things to get provisioned, wal to download.

so each incident has its own lifecycle

again “if you’re going to use a trick use it a lot”

HANDLES CUSTOMER COMMUNICATION

data is very sensitive, customers need to know how things are going.

CAN TRIGGER PAGES

but hopefully does not

3 cases: not yet automated, stays too long in one state without resolution, runtime exception

EXAMPLE INCIDENT

CONTINUES TO GROW

started out just for simple problems, but has become the basis for a lot of automation

now long lived incidents for future action, like when we get notified that an instance will die, need to schedule changeover and notify customer, then wait until time.

LOGGING

LOGPLEX

very old, central component of heroku.

[TK diagram]

all user code if prints to STDOUT ends up in logplex

monitoring and postgres logs go to logplex

LOGS AS EVENT STREAMS

[TK] logfmt example

(MICRO)SERVICES

eventually as things grew, just scaling out

important we don’t (often) reach for services first

breaks up code.

ASIDE: CONWAY’S LAW

“organizations which design systems ... are constrained to produce designs which are copies of the communication structures of these organizations”

people often think this is bad, but if it’s unavoidable might as well not fight it.

LOGICAL BACKUPS
github.com/heroku/transferatu

DATACLIPS

FREE DATABASE SERVICE

is a heroku app that splits up “real” databases a bunch for free customers

separate app

MONITORING

what was just in the main app, got pushed into it’s own app that only does monitoring

ADMIN UI

now that things were spread out between so many services, one view to see into everything

DOWNSIDES OF MICROSERVICES

can no longer do simple joins to find things out

each app might be simpler, but the complexity is pushed into the channels

